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E L E C T R I C  F O R C E S  

IN A D I E L E C T R I C  T W O - L A Y E R  C Y L I N D E R  

W I T H  N O N C O N C E N T R I C  A R R A N G E M E N T  OF LAYERS 

Yu. P. Emets ,  1 Yu. V. Obnosov, 2 and Yu. P. Onofrychuk 1 UDC 537.21 

1. I n t r o d u c t i o n .  It is well known that in nonhomogeneous dielectrics placed in an electric field, 
under the influence of polarization effects electric forces arise that are distinctly manifested in strongly 
nonhomogeneous dielectrics exposed to high-intensity fields. 

In the present work we study electric forces in a two-layer dielectric cylinder of infinite length. In another 
way, more preferably, this nonhomogeneous structure can be considered as a dielectric cylinder placed into 
another dielectric cylinder oriented in a parallel but nonconcentric way to the first one (Fig. 1). 

The nonhomogeneous system is placed into an external electric field, which is homogeneous and directed 
transversely to the cylinders' axes at a large distance from them. Under our proposal, the dielectric permittivity 
constants of all the materials in the system are arbitrary. If in a particular case we let the dielectric permittivity 
constant of the inside cylinder increase to infinity, we end up with the system of a metal cylinder with a 
nonhomogeneous insulation coating. Similar systems are characteristic for many electrophysicat units and 
high-voltage apparatus. 

In piecewise-homogeneous dielectrics electric fields arise at the boundary surfaces separating the 
different materials. The surface forces are distributed so that their effects tend to deform the dielectric bodies 
by drawing them along the external field direction. 

A nonuniform distribution of surface forces leads to the emergence of integral forces, which affect the 
cylinders and tend to displace one cylinder from another. 

As a result of local and integral forces, mechanical stresses arise in dielectric structures; these must be 
taken into account in the design of parts of different electrophysical units for power-generating and technical 
purposes. 

The problem under study requires two separate problems to be solved. First, it is necessary to calculate 
the electric field inside the cylinders and in the surrounding space. After that, using the results of the 
calculation of the field, first the surface and then the integral forces can be calculated. 

It is noteworthy that both problems have a full analytical solution that can be represented in a simple 
form. To obtain these solutions, the efficient methods of the theory of functions of a complex variable are 
used. 

2. T h e  B o u n d a r y  P r o b l e m .  For the conditions under consideration, the electric field in the system 
is two-dimensional; therefore, we can turn to the complex variable plane z = x + iy. 

The electrostatic equations for linear piecewise-homogeneous media allow us to introduce the complex 
functions of intensity and displacement of electric field 

E ( z ) =  E ~ - i E y ,  D ( z ) =  D ~ , - i D y ,  D = e E  (2.1) 

(where e is the dielectric permittivity constant). The functions (2.1) are analytical (excluding the boundary 
li'nes) in each of the three regions S u (# = 1, 2, 3) of homogeneous materials (see Fig. 2a). 
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Fig. 1 

On the boundaries L1 and L2, the conditions of continuity of the tangential components of the electric 
field intensity vector E and the normal components of the displacement vector D are satisfied. Written in 
terms of the function E (z), these conditions have the form 

R e { n ( t ) e 2 E 2 ( t ) } = R e { n ( t ) 6 v E v ( t ) } ,  I m { n ( t ) E 2 ( t ) }  = I m { n ( t ) E v ( t ) } ,  t E L(v+l) /2  (v = 1.3), (2.2) 

where n (t) is a unit  normal to the boundaries: 

n ( t )  ---- t / r  1 = e i0 (t C L1), n (t) = (t - h ) / r2  (t C L2) (0 ~< 0 < 2~r) 

Jr1 and r2 are the radii of the cylinders (rl > r2), h is the distance between the axes of the cylinders]. The 
indices of the dielectric permit t iv i ty  constants and the functions of the electric field show that these values 
belong to the corresponding regions S t, shown in Fig. 2a. 

An additional condition to the problem is the value of the homogeneous external electric field specified 
in an infinitely distant point 

E1 (cr  = Eo = Eo~ - iEoy.  (2.3) 

The boundary relations can be somewhat simplified. With this goal, we first write them in an explicit 
form 

~ 2 E 2 ( t ) + e 2  E 2 ( t ) = ~ l E l ( t ) + ~ l  E l ( t )  ( t E L 1 ) ,  

E 2 ( t ) -  E 2 ( t ) = E l ( t ) -  E l ( t )  (t e L1), 

(2.4) 
z2E2 (t) + ~2 \ ~ ]  E2 (t) = z3E3 (t) + ~3 \ t  -------]~] E3 (t) (t e L2), 

E2 (t) - ~ E2 (t) = E3 (t) - \ t--u--/ /  E3 (t) (t e L2). 

Here the bar over the complex variable denotes complex conjugation (as usual); to write the equalities (2.4), 
the obvious relations are used: 

r 1 t -  h r 2 
~ ( t ) -  - ~ ( t ) -  

r l  t ' r 2 t -h"  

Excluding the function E2 (t) from each couple of equalities (2.4), we obtain two relations 

262E2 (t) = (61 + 62) E1 (t) - (62 - 61) E1 (t), t E L1, 
(2.s) 

( r 2  "~2E3(t), t e L 2 .  252E2 (t) = (62 + ~3) E3 (t) - (62 - 63) \ t  - h )  



Fig. 2 

In the following, it is convenient to use the relative dielectric permittivity constants 

A2~, - e2e2 +- e-----~ev' -1  < A2~ < 1 (u = 1.3). (2.6) 

Using the parameters (2.6), we can write the boundary relations (2.5) in the following final form: 

(1 + A21) E2 (t) = E1 (t) - A21 E1 (t), t E L1, 
(2.7) 

( (1 + A23 ) E2 (t) : E3 (t) - A23 \~- - -~]  E3 (t), t E L2. 

The equalities (2.7) together with the additional condition (2.3) represent the boundary conditions 
to the generalized homogeneous Riemann boundary problem (recently also called a two-element boundary 
problem). 

The boundary problem (2.3), (2.7) most certainly can be solved. An extensive study of it using the 
theory of functions of a complex variable is given in the Appendix. 

3. E l e c t r o s t a t i c  F ie ld  in t he  Sys t em.  The solution to the boundary problem (2.3), (2.7) given in 
the Appendix allows us to rewrite finally the explicit expressions of the functions of an electric field inside 
cylinders and in external space. 

In the system of coordinates in Fig. 2a, the electric field is determined by the expressions 

~'A21rl 2 1-- A21 (X2--Xl)2 s [Ak ( Tlk )2]}  
E1 (Z) ---~ Eo -t- Eo [. z2 A21 k=l z -- Qlk  (z E $1), 

2 - -  )]}} 
E,)(z):(1-A2i){Eo-4-(x2-xl)2E. A k Eo T2_k "~ So (zTlk__Qlk 2 (z E $2), (3.1) 

k=l Z -- Q2k ] /%21 

{ )]} E3(z) = (1 - /X21)(1-4-A23)Eo 1 n a ( x 2 - x l )  2 E Ak T2k 2 k=l Z -- Q2k (z e S3). 

Here 

A = A21A23, ajk 
Tjk- 1-a k' 

a2k = - -  
alk \ x 2 /  

x2a~k Xl ~ h ~ ~ ] 1/2 
Q j k  - - -  ] 1 - - a  2 ( j =  1.2), a l k =  . . x 2 . k - l (  x l  

jk L\ZI /  \X 2 -- h i  

1 { h2 ~ [ 211/2~ 
x , , 2 = y /  + r ~ - - r ~ T  (h 2 + r ~ - r ~ ) 2 - 4 ( r l h )  ] ~. 

(3.2) 

Ti~e points Xl and x2 are situated in the x axis and are the centers of symmetry with respect to the circles 
L1 and L2. 

To illustrate this, in Fig. 3 the patterns of the electric field for the system with the parameters el = 1, 
e2 = 3, e3 = 12, r2/r l  = 0.5, and h / r l  = 0.4 at three directions of the external electric field (a = 0, ~r/4, ~r/2, 
and a is the angle between the vector E0 and the x-axis) are plotted according to formulas (3.1) and (3.2). 



Fig. 3 

The expressions for the electric field (3.1) contain a series of linear dipoles, the standard form of which 
in complex variables is 

1 p 
E ( z )  - ( z  - 

where p is the complex moment of the dipole and w is the coordinate of the dipole in the plane of complex 
variable z. 

In expressions (3.1), two groups of dipoles occur. One is situated in the interval [h, Xl) of the real 
axis x with the coordinates Qlk. The density of distribution of the dipoles increases approaching the limit 
point xl, which is the point of condensation of the dipoles of this group. The other, with the coordinates Q2k, 
is also situated on the real axis x with the condensation point at x2. The dipoles of this group are connected 
with those of the first group by inverse relations with respect to the circle L1 (with radius rl): 

QlkQ2k = r~. (3.3) 

In addition, there is one isolated dipole situated in the center of the circle L1; it is present only in the 
expression for E1 (z) and its moment is independent of the radius and the dielectric permittivity constant of 
the inside cylinder. 

Analysis of expressions (3.1) and (3.2) shows that the absolute values of the dipoles from both groups 
decrease rapidly with the growth of the ordinal number k. This property of the series allows us to limit it to 
a small number of terms for practical calculations. For example, taking account of first terms only gives us 

~ ( / ~ 2 l r l  2 r2 2 \ 
E1 (z) -- Eo -[- 150 l z-2 z~.23 (1 - A21) (z - h) 2 J '  z e S1, 

f E2 (z) ~-- (1 - A21) -lEo --t- h2 (z - r 2 / h )  2 ~-~ _~-~--~ j z e $2, (3.4) 

E3(z)=(1-A 1)(l+A23)E0 1+  ' z e & .  

In this approximation, only three dipoles are taken into account: one in the center of the cylinder with 
large radius, another in the center of the inside cylinder, and the third one situated in the external domain 
and connected with the second one by inverse relations with respect to the circle with radius rl. 

If in expressions (3.4) or (3.1), (3.2) we set A23 = 0 (e2 = ca) or z2~21 = 0 (el = e2), we get the 
well-known solution to the problem of an isolated dielectric cylinder in an external homogeneous electric field. 

4. T h e  Su r f ace  Forces .  In the system under study, free charges do not occur; it is also considered 
that electrostriction effects do not appear here. In the present case, the appearance of the forces is due to 
the polarization phenomena in nonhomogeneous dielectrics. The density of these forces is defined by the 
formula [1, 2] 

1 E2gra d e. (4.1) 
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Fig. 4 

In piecewise homogeneous media, f appears only on boundary surfaces separating different dielectrics. 
The formula for calculating the density of forces (4.1) in that case is transformed to the form [1] 

f = 2n  (e(-) - e(+)) [E~+)t + 
e(_) e(+) 

Here n is the normal unit vector directed to the domain of the medium denoted by the index ( - ) ;  Et and E,~ 
are the tangential and normal components of the vector E on the boundary surfaces approaching these from 
either side, denoted by the indices (+) and ( - ) .  

To find the distribution of the density of surface forces on the contours of the cylinders, it is necessary 
to turn to the expressions obtained for the electric field (3.1), (3.2) and to calculate the normal and tangential 
components of the vector E on the contours L1 and L2: 

E ,  = Re(En) ,  E, = !m(En) ,  n = e io. (4.3) 

Substitution of formulas (4.3) into expression (4.2) gives us the desired value of the forces. 
As an example, the forces in the system with the parameters ct,/r = 1, 3, 12, r2/rl = 0.5, h/rl = 0.4 

at three directions of external electric field (a = 0, ~r/4, ~'/2) were calculated. The results of the calculations 
illustrating the pattern of distribution of surface force density in the considered system are represented in 
graphic form in Fig. 4 (in relative values f/r 

The surface forces by their action (pressure and extension) tend to deform the cylinders by drawing 
them along the external electric field. 

5. I n t eg ra l  Forces .  Nonhomogeneous and nonsymmetric distribution of the surface forces on the 
cylinders leads to the emergence of integral forces in the system, which tend by their action to displace the 
cylinders from each other. Forces which are equal in value and directed in an opposite way are applied to the 
cylinders, which can be calculated (for a unit of length of the cylinders) by taking the integrals of the surface 
forces on the boundary contours: 

= [ fd , F2 = [ fdt (F, -- - r 2 )  F1 (5.1) 
L1 L2 

[t is necessary to note that the surface forces f, according to the formulas (4.1) and (4.2), are directed 
normal to the boundary circles of the cylinders. Therefore, the resultants of these forces brought to the centers 
of the circles are exactly the integral forces F1 and F2. Hence, the conclusion follows that the forces F1 and 
F2 are applied to the centers of the circles (or in space, to the axes of the cylinders). 

CMculation of integral forces according to the formulas (5.1) usually requires numerical calculations. In 
what follows, another approach is used to determine the integral forces in the system, based on the concept of 
dipole-dipole interactions. Such a method of calculation of the forces allows one to obtain analytical expressions 
for the integral forces in a simple form convenient for practical analysis. 
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Fig. 5 

The initial formula for calculation of the forces in the developed method  is the expression for electric 
field E2 (z) given in (3.1). It is represented by the fields of dipoles of two groups, the properties of which were 
discussed in Section 3. Schematically, the disposition of the dipoles is shown in Fig. 5 (the orientation of the 
dipoles corresponds to the case when A21, A23 > 0). 

We assume that  the medium is homogeneous with dielectric permitt ivi ty constant e2. In this medium, 
the interaction of the dipoles is considered, one group of which, with moments pm (m = 1, 2 , . . . ) ,  is situated 
in the interval [h, xl).  The coordinates of the dipoles of the second group, with moments  pn (n = 1 ,2 , . . . ) ,  
are connected with the coordinates of the dipoles of the first group by inverse transformation with respect to 
the circle with radius rx (3.3). 

The forces exerted by the dipoles pn on the dipoles pm are defined by the formula 

Fmn "= (prn grad) En.  (5.2) 

The reciprocal action of the dipoles prn on the dipoles Pn gives forces equal in value and opposite in direction: 

F .m  = - F r o . .  (5.3) 

In homogeneous dielectrics formula (5.2) can be transformed to the form 

Fmn = grad (p .~En) .  (5.4) 

The summation of the forces exerted by each dipole of one group on all the dipoles of the other group 
gives the integral forces 

F1 = E F,,,, F2 = - F 1  (5.5) 
n = l  m = l  

The general term of the double series (5.5) calculated according to formulas (5.2), (5.3), or (5.4), where 
pm and E,, are taken from the expression for E2 (z) in (3.1), has the form 

- - x l ) ' T I n T 2 m ]  (5.6) Finn = 47rc21E01" Am+"[(1 A21) (x2 9 2 
A21 (Q2m - Q1. )  3 

The forces Fm,~ turned out to be directed along the x-axis: Fmn = exF~mn (e~ is the unit vector). The 
fact that  the component Fymn equals zero means that at any direction of the external electric field E0 the 
moments in the system are lacking, otherwise, they would tend to turn the cylinders with respect to E0. 

The integral forces, therefore, act along the straight line connecting the centers of the circles. They 
are the central forces that  tend to displace the cylinders from each other, in the given case, along the axis x. 
The signs of the integral forces indicating the direction of action depend on the relation between the dielectric 
permittivity constants of the materials in the system. 

The double series in formula (5.5) converges rapidly. An approximation taking into account only the 
few first dipoles from both groups gives good results. 

If only the first dipole from each group is taken into account, expressions (5.5) and (5.6), taking account 
of formulas (3.2), have the form 

r4h 
F1 = Fll = - 2 ~ A 2 3  A (1 - / k 2 1 )  2 (1 - h2) 3 (0 < h < 1 - r ) .  (5 .7 )  
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Expression (5.7) is written in relative values: 

F,11 = F l l / F o  (F0 : 27rrle0[E012), e, : e2/r r ,  : r2 / r l ,  h,  -~ h / r l  

(the asterisks are omitted). 
Calculation of the integral forces in the system can be done by two methods: 1) direct calculation 

of the integrals (5.1), which requires a preliminary calculation of the surface forces on the cylinders; 2) on 
the basis of the dipole-dipole interaction, with simple single-type differentiation operations (5.2) or (5.4) and 
subsequent computation of the series (5.5). 

Both methods of calculation of the integral forces give exactly the same results. However, the second 
method is easier to perform; it does not require the calculation of the surface forces, and the computation of 
the electric field in the cylinder of greater radius is sufficient. In addition, the final expressions for the forces 
are obtained in an analytical form. 

The dependence of the integral force on geometrical parameters of the system (r, h) is characterized 
by the presence of the maximum, which is illustrated in graphical form in Fig. 6, where the values of the 
relative force at el = 2, r = 1, and e3 = 6 are plotted. The dotted line enveloping the continuous lines 
corresponds to the limit case of contact of the cylinders. It has a maximum at h, ~ 0.2 for any values of 
dielectric permittivities in the system. 

6. Conc lus ion .  The study of the integral force in a system of two noncoaxial dielectric cylinders allows 
one to make the following conclusions. 

(1) Integral forces directed from opposite directionc and applied to the cylinders act in the system and 
'tend to displace the cylinders from each other along the straight line connecting the centers of the circles. 

(2) The direction of action of the integral forces is determined by the sign of the parameter A21, i.e., by 
the relation between the dielectric permittivities E1 and r and does not depend on the dielectric permittivity 
of the inside cylinder ~3. 

If el > r the inside cylinder tends to be displaced from the axis of the cylinder of greater radius; if 
r < e2, the inside cylinder tends to be displaced to the central position. When the axes of both cylinders 
coincide, the integral forces equal zero. 

(3) The integral force has maximum at h/r1 ~ 0.2. 
(4) In any direction of the external electric field the moment in the system is lacking, making it possible 

for the cylinders to rotate relative to each other. 
A p p e n d i x .  Consider the solution to the boundary problem (2.3), (2.7). As a result, we determine the 

electric fields inside the cylinders and in external space. The solution to the problem is based on the theory 
of functions of a complex variable; here the method of conformal mapping and the principle of analytical 
extension are used. 

First, one should map the plane z with nonconcentric circles onto the plane ( with concentric circles 



(see Fig. 1). Such a mapping is performed by means of the piecewise-linear function 

= T _ l ( z )  _ z - X l ,  ~" = ~ --1.- i~'. 
z -- x 2 

Here Xl and x2 are points symmetric with respect to the circles L1 and L2: 

(A.1) 

a~lZ2 = r~ ,  ( x l - h ) ( x 2 - h )  : t "2. 

The points xl and x2 are si tuated in the axis x; their coordinates are given in (3.2). 
At mapping (A.1) the regions S~, turn to the regions f ~  (/~ = 1, 2, 3), the circles L1 and L2 turn to 

the circles A1 and A2, and the infinitely distant point z = e~ turns to the point ~ = 1 in the real axis ~. 
The function 

x 2 ~  --  x 1 
z = T (r - (A.2) ( - 1  

performs the inverse mapping to (A.1). 
In the mapped  plane we introduce a piecewise-analytical function f(~') = E(T(~)), for the 

determination of which, according to (2.7) and (A.2), we have the boundary relations 

( (1 + A21 ) f2  (7") = f l  (7") - -  A21 f l  (7.), 7" E )~1, 
(A.3) 

( ~2 ) 2 
(l+A23)f2(7.)=fa(7.)-A23 T(7.)-h fa(7.), r E A 2 .  

From (2.3) follows the additional condition 

/1 (1) = E0. 

form 

(A.4) 

According to the Laurent theorem, we represent the function f2 (C) analytical in the ring f~2 in the 

f2 (C) = f~ (~) + f~- (r 

moreover, we can assume without loss of generality that  

f2 + (C), KI < ~ ,  (A.5) 
f2 (0, KI > ~2, 

f~- (1) = 0. (A.6) 

Taking representation (A.5) into account, relations (A.3) can be transformed to 

( rl ,~2 
(1 + A21) f +  (7.) + A21 \T----~/ f l  (7") = f l  (7") -- (1 + A21 ) f g  (r),  w E A1, 

(A.7) 
( r2 ) 2 

(l+/x23)f2+(7.)-fa(7.)=-(l+A23)fg(')-~23 r ( 7 . ) - h  fa(7.), 7.e~2. 

In accordance with the principle of continuous analytical continuation, relations (A.4), (A.6), and (A.7) 
allow one to introduce two analytical functions: 

{ r (~) = (1 + A21) f + ( ( )  + A21 fl  , I~'l < 71, 

f l  (s - (1 + m21 ) f~- (C), 1~'1 > 71, 

* (~') = (1 + A23 ) ] ' 2  (( ' )  + A23 f3 , I(I > "/'2- 

Here, with regard to (A.2), 

rl C - 1 r2 C - 1 
- - - - -~ ,  -- 72 - - .  T(~) - 7 1  r  T ( ( ) - h  ( - 7 2  

(A.8) 

(A.9) 



According to expressions (A.8) and (A.9), the function �9 (r has a pole of no higher than second order 
in the point r = '77, and is, therefore, a polynomial of second order, which is convenient to represent in the 
form 

A21 + c, + (A.10) 

where Co, C1, and C2 are complex constants to be determined. 
Formulas (A.6), (A.8), and (A.9) imply that  in the point r = 1 the function �9 (r equals zero, and, 

therefore, according to the Liouville theorem, 

(r - o. 

Combining formulas (A.8), (A.10), and (A.11), we obtain four equalities: 

( r l )  2 ( ~ )  [ ( rl "~2 rl ] 
(1-k/k21)f+(r ~ fl ~ ='A21 C2 \ '~ '~j  -FC1T-'~"I-Co , 

f ,  (r - (1 + A21 ) f ~  (r = A21 C2 ( )2 + Cl T--~ + C0 , Ir > '71, 

(1 + ,",23) f +  (r - A (r = o, Ir < '7~, (1 + ~23) f ~  (r + ,%3 T 0 )  - h f3 

Iq < '7,, 

(A.12) 

=0,  1r 

Then we can determine the constants Co, C1, and C2. 
Assuming that  in the second equality from (A.12) r = 1 and with regard to formulas (A.4), (A.6), and 

(A.9), we obtain 

Co = E0/A21. (A.13) 

The first equality from (A.12) by inverse transformation with respect to the circle "71 can be brought to the 
form 

( 1 + A 2 1 ) f +  ~ +A21 - -  f l ( r  C2 + C I - - + C o  , ]r 
rl 

Hence, 

p _ _ (1..hA21) f 7"1 "~2f-l-f'712'~ _~_A21fl(()_ z~21 2 ~r-CIT---~-[-Co Ir :>'71 �9 \ T ( r  J2 \ ~ j  

Taking the formulas (A.4) and (A.9) into account and substituting the value r = 1, we have 

C2 = E0. (A.14) 

One can also prove (we omit the computations for brevity) that  

C1 = 0. (A.15) 

Thus, the constants in the first and the second equalities from (A.12) are determined by the formulas 
(A.13)-(A.15), and the equalities can be finally written as 

(1 -~ z_~21 ) f2 + (() -Jr- A21 \T---~// f l  ~ = A21E0 \~(-~-~] 4- Eo, [r < ~/1, 
( A 1 6 )  

fl(r162162 +G0,  1r ) '71- 

On the basis of the second equality from (A.16), expression (A.5), and the third equality from (A.12), 



we can represent the desired function f (r as 

f1(r = (1 +A2 , ) f2 ( r  +Z~,lWo (')'1 ~ )  

f (r = f2 (r = f+ ((') + f 2  (('), 

f3 (() (1 + A23) jr+ (r 

+E0, Ir > 71, 

~ < Ir < 7~, 

Ir < "~2- 

(A.17) 

The following calculations are connected with the finding of the function f~- (r and then f+  ((), which 
will determine the function f (r 

We perform inverse transformation in the second equality from (A.16), and then combine it with the 
first one. As a result, we obtain 

f +  (r + A21 \T---~J f~- ---- = (1 - A21 ) E0, Ir < ")'1. (A.18) 

Similarly, combination of the last two equalities from (A.12) gives 

f 2  -=-- + A23 f+  (r = 0, Ir < ~2. (A.19) 

We can exclude the function f+(r  from the relations (A.18) and (A.19) and make use of the formulas 
(A.9). Then, 

( r  ( ( - 1 ) 2  (-~) 
/ ' ,  "~1 ( _ . ~ 2  J2 - - -  - "~2 r _ . y ~ j  f i  - - -  = A23  (1 - A 2 1 )  Go,  Ir < 72- (A.20) 

Performing the inverse transformation of the equality (A.20), we obtain a functional equation with 
respect to f~- (r 

f~-(() = -A23 (1- A21)Eo + A ( F  -1 /U ( r20 ,  Ir >~2. (A.21) 

Here F : "71/72- 
The solution of Eq. (A.21) can be found by the method of mathematical induction with use of successive 

substitutions of the relations 

e t c .  

~ r ~ 2 

f ;  (r4~) = - ~ 2 3  (1 - ~2~ )~0  ( ;2  
r r-4 

r - ~ r - 4 ;  \ 

After n applications of this procedure, we obtain 

+ A (F -1 ( -- F-2"~2 b-~)  f;- (r4r 

+ A (F -1 ~ -- F--4~2 
( "~-g-6] f2- ( r6() '  

Iq > "r2, 

Iq > ~2 

1--A21E0((~-1)2s r/Nk/' ~/1v-k )2] +z~n  %)2f2 (r2"r Iq >~2- 
/ 2  (() = A21 k=l[ \ r -2k ( r - "  C - (A.22) 

The remainder term of the series (A.22) contains small parameters A, F -1 < 1 and, therefore, at 
unlimited increase of the number n, goes to zero. 

Thus, the function f~- (r has the form 

f~_ (() = 1 - aX21 Eo (( - 1) 2 X2 Ak 3,1F-k ,~2 " ~2-7 r - ~r~2kj  , Iq > 72. (A.23) 
k = l  

10 



The function f +  (~) is determined by use of (A.18) and (A.23) (after the inverse transformation with 
respect to the circle 71). The calculations give 

f+  (r --- (1 - A21) Eo {1 -~- (i - 1) 2 k=l ~" _2F~k , 1~'1 < 3'1. (A.24) 

Substitution of expressions (A.23) and (A.24) for relations (A.17) determines the desired function f (~). 
By following this with a transition to the plane z, we obtain expressions for the electric field given in Section 3. 
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